RTA-408 Protects Kidney from Ischemia-Reperfusion Injury in Mice via Activating Nrf2 and Downstream GSH Biosynthesis Gene
نویسندگان
چکیده
Acute kidney injury (AKI) induced by ischemia-reperfusion is a critical conundrum in many clinical settings. Here, this study aimed to determine whether and how RTA-408, a novel oleanane triterpenoid, could confer protection against renal ischemia-reperfusion injury (IRI) in male mice. Mice treated with RTA-408 undergoing unilateral ischemia followed by contralateral nephrectomy had improved renal function and histological outcome, as well as decreased apoptosis, ROS production, and oxidative injury marker compared with vehicle-treated mice. Also, we had found that RTA-408 could strengthen the total antioxidant capacity by increasing Nrf2 nuclear translocation and subsequently increased Nrf2 downstream GSH-related antioxidant gene expression and activity. In vitro study demonstrated that GSH biosynthesis enzyme GCLc could be an important target of RTA-408. Furthermore, Nrf2-deficient mice treated with RTA-408 had no significant improvement in renal function, histology, ROS production, and GSH-related gene expression. Thus, by upregulating Nrf2 and its downstream antioxidant genes, RTA-408 presents a novel and potential approach to renal IRI prevention and therapy.
منابع مشابه
The novel triterpenoid RTA 408 protects human retinal pigment epithelial cells against H2O2-induced cell injury via NF-E2-related factor 2 (Nrf2) activation
Oxidative stress-induced retinal pigment epithelial (RPE) cell damage is an important factor in the pathogenesis of age-related macular degeneration (AMD). Previous studies have shown that RTA 408, a synthetic triterpenoid compound, potently activates Nrf2. This study aimed to investigate the protective effects of RTA 408 in cultured RPE cells during oxidative stress and to determine the effect...
متن کاملCoenzyme Q10 Protects Hippocampal Neurons against Ischemia/ Reperfusion Injury via Modulation of BAX/Bcl-2 Expression
Introduction: Preliminary studies have con.rmed reduction in cell death following treatment with antioxidants. According to this .nding we study the relationship between consumption of CoQ10 and expression of Bax and Bcl2 in hippocampus following ischemia/reperfusion as proteins involved in cell programmed death or apoptosis. Methods: We studied the protective role of CoQ10 against ischemia-rep...
متن کاملThe Nrf2 triterpenoid activator, CDDO-imidazolide, protects kidneys from ischemia reperfusion injury in mice
Acute kidney injury (AKI) caused by ischemia-reperfusion is a major clinical problem in both native and transplanted kidneys. We had previously shown that deficiency of Nrf2, a potent bZIP transcription factor that binds to the antioxidant response element, enhances susceptibility to experimental ischemic AKI. Here we further explored the role of Nrf2 in AKI by amplifying Nrf2 activation in viv...
متن کاملThe Study of Petoxifylline Drug Effects on Renal Apoptosis and Bcl2 Gene Expression Changes Following Ischemic Reperfusion Injury in Rat
Background & Target: Ischemia Reperfusion injury is the tissue damage caused when blood supply returns to the tissue after a period of ischemia or lack of oxygen. In this study, the effect of pentoxyfylline on bcl2 gene expression changes and cell injury in kidney of rat following Ischemia Reperfusion were evaluated.Methods: In this experimental study, 20 male wistar rats with average weight of...
متن کاملThe Study of Petoxifylline Drug Effects on Renal Apoptosis and Bcl2 Gene Expression Changes Following Ischemic Reperfusion Injury in Rat
Background & Target: Ischemia Reperfusion injury is the tissue damage caused when blood supply returns to the tissue after a period of ischemia or lack of oxygen. In this study, the effect of pentoxyfylline on bcl2 gene expression changes and cell injury in kidney of rat following Ischemia Reperfusion were evaluated.Methods: In this experimental study, 20 male wistar rats with average weight of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017